Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Popul Health Metr ; 22(1): 7, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643138

ABSTRACT

BACKGROUND: Disability-free life expectancy (DFLE) has been used to gain a better understanding of the population's quality of life. OBJECTIVES: The authors aimed to estimate age and sex-specific disability-free life expectancy (DFLE) for urban and rural areas of Bangladesh, as well as to investigate the differences in DFLE between males and females of urban and rural areas. METHODS: Data from the Bangladesh Sample Vital Statistics-2016 and the Bangladesh Household Income and Expenditure Survey (HIES)-2016 were used to calculate the disability-free life expectancy (DFLE) of urban and rural males and females in Bangladesh in 2016. The DFLE was calculated using the Sullivan method. RESULTS: With only a few exceptions, rural areas have higher mortality and disability rates than urban areas. For both males and females, statistically significant differences in DFLE were reported between urban and rural areas between the ages of birth and 39 years. In comparison to rural males and females, urban males and females had a longer life expectancy (LE), a longer disability-free life expectancy, and a higher share of life without disability. CONCLUSION: This study illuminates stark urban-rural disparities in LE and DFLE, especially among individuals aged < 1-39 years. Gender dynamics reveal longer life expectancy but shorter disability-free life expectancy for Bangladeshi women compared to men, emphasizing the need for targeted interventions to address these pronounced health inequalities.


Subject(s)
Disabled Persons , Healthy Life Expectancy , Male , Humans , Female , Adult , Bangladesh/epidemiology , Quality of Life , Life Expectancy , Income
2.
Photochem Photobiol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38533776

ABSTRACT

It has been 30 years since Photofrin-PDT was approved for the treatment of bladder cancer in Canada. However, Photofrin-PDT failed to gain popularity due to bladder complications. The PDT with red light and IV-administered Photofrin could permanently damage the bladder muscle. We have been developing a new combination strategy of PpIX-PDT with singlet oxygen-cleavable prodrugs for NMIBC with minimal side effects, avoiding damage to the bladder muscle layer. PpIX can be excited by either green (532 nm) or red (635 nm) light. Red light could be more efficacious in vivo due to its deeper tissue penetration than green light. Since HAL preferentially produces PpIX in tumors, we hypothesized that illuminating PpIX with red light might spare the muscle layer. PpIX-PDT was used to compare green and red laser efficacy in vitro and in vivo. The IC50 of in vitro PpIX-PDT was 18 mW/cm2 with the red laser and 22 mW/cm2 with the green laser. The in vivo efficacy of the red laser with 50, 75, and 100 mW total dose was similar to the same dose of green laser in reducing tumor volume. Combining PpIX-PDT with prodrugs methyl-linked mitomycin C (Mt-L-MMC) and rhodamine-linked SN-38 (Rh-L-SN-38) significantly improved efficacy (tumor volume comparison). PpIX-PDT or PpIX-PDT + prodrug combination did not cause muscle damage in histological analysis. Overall, a combination of PpIX-PDT and prodrug with 635 nm laser is promising for non-muscle invasive bladder cancer treatment.

3.
Photochem Photobiol ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433310

ABSTRACT

Mitochondria play an essential role in cancer treatment by providing apoptotic signals. Hexyl aminolevulinate, an FDA-approved diagnosis for non-muscle invasive bladder cancer, induces the production of protoporphyrin IX (PpIX) preferentially by mitochondria in cancer cells. Photosensitizer PpIX upon illumination can release active chemotherapy drugs from singlet oxygen-activatable prodrugs. Prodrugs placed close enough to PpIX formed in mitochondria can improve the antitumor efficiency of PpIX-PDT. The preferred uptake of prodrugs by cancer cells and tumors can further enhance the selective damage of cancer cells over non-cancer cells and surrounding normal tissues. Mitochondriotropic prodrugs of anticancer drugs, such as paclitaxel and SN-38, were synthesized using rhodamine, a mitochondrial-targeting moiety. In vitro, the mitochondrial targeting helped achieve preferential cellular uptake in cancer cells. In RT112 cells (human bladder cancer cells), intracellular prodrug concentrations were 2-3 times higher than the intracellular prodrug concentrations in BdEC cells (human bladder epithelial cells), after 2 h incubation. In an orthotopic rat bladder tumor model, mitochondria-targeted prodrugs achieved as much as 34 times higher prodrug diffusion in the tumor area compared to the nontumor bladder area. Overall, mitochondria targeting made prodrugs more effective in targeting cancer cells and tumors over non-tumor areas, thereby reducing nonspecific toxicity.

4.
Sci Rep ; 14(1): 4804, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413807

ABSTRACT

A numerical analysis of a CdTe/Si dual-junction solar cell in terms of defect density introduced at various defect energy levels in the absorber layer is provided. The impact of defect concentration is analyzed against the thickness of the CdTe layer, and variation of the top and bottom cell bandgaps is studied. The results show that CdTe thin film with defects density between 1014 and 1015 cm-3 is acceptable for the top cell of the designed dual-junction solar cell. The variations of the defect concentrations against the thickness of the CdTe layer indicate that the open circuit voltage, short circuit current density, and efficiency (ƞ) are more affected by the defect density at higher CdTe thickness. In contrast, the Fill factor is mainly affected by the defect density, regardless of the thin film's thickness. An acceptable defect density of up to 1015 cm-3 at a CdTe thickness of 300 nm was obtained from this work. The bandgap variation shows optimal results for a CdTe with bandgaps ranging from 1.45 to 1.7 eV in tandem with a Si bandgap of about 1.1 eV. This study highlights the significance of tailoring defect density at different energy levels to realize viable CdTe/Si dual junction tandem solar cells. It also demonstrates how the impact of defect concentration changes with the thickness of the solar cell absorber layer.

5.
Heliyon ; 10(3): e25373, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352773

ABSTRACT

This study pioneers an innovative approach to fortifying online voting systems, leveraging RSA (Rivest-Shamir-Adleman) encryption and decryption techniques for robust data protection. Through a comprehensive amalgamation of advanced security layers, including MobileFaceNet-driven face verification, device fingerprint matching, and multi-factor authentication, this system engenders a resilient shield against cyber vulnerabilities. By harnessing a Firebase database, user information is securely stored and authenticated, affirming their pivotal role in the democratic process. The symphony of RSA encryption and decryption orchestrates a formidable fortress around data transmission and storage, ensuring impregnable security against digital threats. This paradigm shift in voting technology strives to not only elevate security but also enhance accessibility and convenience, ultimately contributing to the evolution of online voting systems and fostering greater participation rates and reducing associated costs in the digital era.

6.
Small ; 20(7): e2305865, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37798672

ABSTRACT

2D semiconductors (2SEM) can transform many sectors, from information and communication technology to healthcare. To date, top-down approaches to their fabrication, such as exfoliation of bulk crystals by "scotch-tape," are widely used, but have limited prospects for precise engineering of functionalities and scalability. Here, a bottom-up technique based on epitaxy is used to demonstrate high-quality, wafer-scale 2SEM based on the wide band gap gallium selenide (GaSe) compound. GaSe layers of well-defined thickness are developed using a bespoke facility for the epitaxial growth and in situ studies of 2SEM. The dominant centrosymmetry and stacking of the individual van der Waals layers are verified by theory and experiment; their optical anisotropy and resonant absorption in the UV spectrum are exploited for photon sensing in the technological UV-C spectral range, offering a scalable route to deep-UV optoelectronics.

7.
J Health Popul Nutr ; 42(1): 146, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129922

ABSTRACT

BACKGROUND: Cholera can result in the expulsion of important microbiota from the gut and result in death if left untreated. The disease transmits mainly via drinking water carrying Vibrio cholerae; and household contacts (HHC) of cholera patients are at elevated risk during the first week of infection. The gut microbiota profiles of HHC-children of cholera patients at Dhaka city slums were investigated before (day 0) and after (day 8) delivery of chlorinated water as part of the major study 'CHoBI7 trial (cholera-hospital-based intervention for 7 days)'. RESULT: Results of sequencing and analysis of bacterial community DNA revealed the predominance of two bacterial phyla: Bacteroidetes and Firmicutes at day 0 with a relative abundance of 62 ± 6 (mean ± SEM%) and 32 ± 7, respectively. The pattern reversed at day 8 with a decreased relative abundance of Bacteroidetes (39 ± 12; p = 0.034) and an increased abundance of Firmicutes (49 ± 12; p = 0.057). Of 65 bacterial families confirmed at day 0, six belonging to Proteobacteria including Vibrionaceae disappeared at day 8. Interestingly, the relative abundance of four Firmicutes families-Lachnospiraceae, Bifidobacteriaceae, Clostridiaceae, and Ruminococcaceae was increased in all five study children at day 8. CONCLUSION: The observed exclusion of pathogenic Proteobacteria and enhancement of beneficial Firmicutes in the gut of children delivered with chlorinated water as part of WASH intervention reflect a great promise of the CHoBI7 program in preventing cholera and improving child health.


Subject(s)
Cholera , Gastrointestinal Microbiome , Water Purification , Humans , Bangladesh , Cholera/prevention & control , Hand Disinfection/methods , Prospective Studies , Soaps , Water Purification/methods
8.
Heliyon ; 9(11): e21536, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027560

ABSTRACT

The study used magnetron sputtering to investigate the growth of cadmium telluride (CdTe) thin films on surface treated n-type silicon (n-Si) substrates. The n-Si substrates were textured using potassium hydroxide (KOH) before the sputter deposition of CdTe. This was followed by cadmium chloride treatment to reduce the strain at the interface of CdTe and Si, which is caused by the incompatible lattice and thermal expansion mismatch (CTE). X-ray diffraction (XRD) analysis showed that the lowest FWHM and dislocation densities were obtained for CdCl2/CdTe/txt-nSi, which aligns with the scanning electron microscopy (SEM) results. In the SEM images, the interface bonding between the CdTe and Si surfaces was visible in the cross-sections, and the top-view images revealed sputtered CdTe thin films conforming to the patterns of pyramidal textured Si as an engineered surface to capture more light to maximize absorption in the CdTe/Si tandem design. The Energy dispersive X-ray (EDX) results showed that all the CdTe deposited on textured n-Si exhibited more Te atoms than Cd atoms, irrespective of the CdCl2 treatment. The presented results suggest that the texturization and CdCl2 treatment improved the morphology and grain boundary passivation of the sputtered CdTe. The adhesiveness of CdTe on the n-Si substrate was also significantly enhanced. Our findings further demonstrate that proper surface treatment of the Si substrate can greatly improve the quality of CdTe grown on Si by reducing the strain that occurs during the growth process. This study demonstrates a valuable method for enhancing the integration of CdTe with Si for two-junction tandem solar cell applications.

9.
Heliyon ; 9(11): e21622, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027707

ABSTRACT

Recent advancements in CdTe solar cell technology have introduced the integration of flexible substrates, providing lightweight and adaptable energy solutions for various applications. Some of the notable applications of flexible solar photovoltaic technology include building integrated photovoltaic systems (BIPV), transportation, aerospace, satellites, etc. However, despite this advancement, certain issues regarding metal and p-CdTe remained unresolved. Besides, the fabrication of a full-working device on flexible glass is challenging and requires special consideration due to the unstable morphology and structural properties of deposited film on ultra-thin glass substrates. The existing gap in knowledge about the vast potential of flexible CdTe solar cells on UTG substrates and their possible applications blocks their full capacity utilization. Hence, this comprehensive review paper exclusively concentrates on the obstacles associated with the implementation of CdTe solar cells on UTG substrates with a potential back surface field (BSF) layer. The significance of this study lies in its meticulous identification and analysis of the substantial challenges associated with integrating flexible CdTe onto UTG substrates and leveraging Cu-doped ZnTe as a potential BSF layer to enhance the performance of flexible CdTe solar cells.

11.
Heliyon ; 9(9): e19664, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809655

ABSTRACT

Wind turbine fires pose a significant global problem, leading to substantial financial losses. However, due to limited open discussions and lax regulations in the wind power industry, progress in addressing this issue has been hindered. This study aims to shed light on the fire risks associated with wind turbine nacelles and blades, while also exploring preventive measures and the latest fire detection and extinguishing technologies. The research conducted in this study involves a comprehensive investigation of various case studies, utilizing causal examination to identify common failure forms and their roles in fire incidents. Additionally, typical hazards, with a focus on fire incidents, in wind turbines are diagnosed. The primary causes of these fires were determined to be lightning strikes and hydraulic faults, often exacerbated by the presence of combustible materials. To conclude, the study includes a survey that encompasses education, knowledge analysis, and real-life accident experiences to assess fire risks and prevention measures in wind turbines. The participation of experts from wind farms, including those from the People's Republic of Bangladesh and other countries, adds valuable insights. The findings from this study serve as a crucial resource for enhancing safety standards and mitigating fire incidents within the wind power industry.

12.
Bioorg Med Chem Lett ; 92: 129406, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37423504

ABSTRACT

Gamma-glutamyl transferase 1 (GGT1) is a critical enzyme involved in the hydrolysis and/or transfer of gamma-glutamyl groups of glutathione, which helps maintain cysteine levels in plasma. In this study, we synthesized L-ABBA analogs to investigate their inhibitory effect on GGT1 hydrolysis and transpeptidase activity, with the goal of defining the pharmacophore of L-ABBA. Our structure-activity relationship (SAR) study revealed that an α-COO- and α-NH3+ group, as well as a two-CH2 unit distance between α-C and boronic acid, are essential for the activity. The addition of an R (alkyl) group at the α-C reduced the activity of GGT1 inhibition, with L-ABBA being the most potent inhibitor among the analogs. Next, we investigated the impact of L-ABBA on plasma levels of cysteine and GSH species, with the expectation of observing reduced cysteine levels and enhanced GSH levels due to its GGT1 inhibition. We administered L-ABBA intraperitoneally and determined the plasma levels of cysteine, cystine, GSH, and GSSG using LCMS. Our results showed time- and dose-dependent L-ABBA changes in total plasma cysteine and GSH levels. This study is the first to demonstrate the regulation of plasma thiol species upon GGT1 inhibition, with plasma cystine levels reduced by up to âˆ¼ 75 % with L-ABBA (0.3 mg/dose). Cancer cells are highly dependent on the uptake of cysteine from plasma for maintaining high levels of intracellular glutathione. Thus, our findings suggest that GGT1 inhibitors, such as L-ABBA, have the potential to be used in GSH reduction thereby inducing oxidative stress in cancer cells and reducing their resistance to many chemotherapeutic agents.

13.
Article in English | MEDLINE | ID: mdl-37444133

ABSTRACT

Climate change is exposing populations to increasing temperatures and extreme weather events in many parts of Australia. To prepare for climate challenges, there is a growing need for Local Health Districts (LHDs) to identify potential health impacts in their region and strengthen the capacity of the health system to respond accordingly. This rapid review summarised existing evidence and research gaps on the impact of climate change on health and health services in Northern New South Wales (NSW)-a 'hotspot' for climate disaster declarations. We systematically searched online databases and selected 11 peer-reviewed studies published between 2012-2022 for the Northern NSW region. The most explored health outcome was mental health in the aftermath of floods and droughts, followed by increased healthcare utilisation due to respiratory, cardiovascular and mortality outcomes associated with bushfire smoke or heat waves. Future research directions were recommended to understand: the compounding impacts of extreme events on health and the health system, local data needs that can better inform models that predict future health risks and healthcare utilisation for the region, and the needs of vulnerable populations that require a whole-of-system response during the different phases of disasters. In conclusion, the review provided climate change and health research directions the LHD may undertake to inform future adaptation and mitigation policies and strategies relevant to their region.


Subject(s)
Climate Change , Disasters , New South Wales , Australia , Health Services
14.
Photochem Photobiol ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37469327

ABSTRACT

Photodynamic therapy (PDT) initially employed red light, which caused some patients to experience permanent bladder contractions. PDT using the FDA-approved drug hexaminolevulinate (HAL), which produces protoporphyrin IX (PpIX) in the tumor, showed some promise but has low efficacy in treating non-muscle-invasive bladder cancer (NMIBC). We developed singlet oxygen-activatable prodrugs of two anticancer drugs, paclitaxel and mitomycin C, to enhance the antitumor effect of PpIX-PDT without producing systemic side effects, by promoting only local release of the active chemotherapeutic agent. Orthotopic NMIBC model was used to compare the efficacy of prodrugs only, PpIX-PDT, and prodrugs + PpIX-PDT. 532 nm laser with a total power of 50 mW for 20 min (60 J, single treatment) was used with HAL and prodrugs. Histology and microscopic methods with image analysis were used to evaluate the tumor staging, antitumor efficacy, and local toxicity. Prodrug + PpIX-PDT produced superior antitumor efficacy than PpIX-PDT alone with statistical significance. Both PpIX-PDT alone and combination therapy resulted in mild damage to the bladder epithelium in the normal bladder area with no apparent damage to the muscle layer. Overall, SO-cleavable prodrugs improved the antitumor efficacy of PpIX-PDT without causing severe and permanent damage to the bladder muscle layer.

15.
Glia ; 71(8): 1804-1829, 2023 08.
Article in English | MEDLINE | ID: mdl-37026600

ABSTRACT

Autoantibodies against the NR1 subunit of NMDA receptors (NMDARs) have been shown to promote crosslinking and internalization of bound receptors in NMDAR encephalitis (NMDARE). This internalization-mediated loss of NMDARs is thought to be the major mechanism leading to pathogenic outcomes in patients. However, the role of bound autoantibody in engaging the resident immune cells, microglia, remains poorly understood. Here, using a patient-derived monoclonal NR1 autoantibody (hNR1-mAb) and a co-culture system of microglia and neurons, we could show that hNR1-mAb bound to hippocampal neurons led to microglia-mediated removal of hNR1-mAb bound NMDARs. These complexes were found to accumulate inside endo-lysosomal compartments of microglia. Utilizing another patient isolated monoclonal autoantibody, against the α1-subunit of GABAA receptors (α1-GABAA -mAb), such removal of receptors was found to be specific to the antibody-bound receptor targets. Interestingly, along with receptor removal, we also observed a reduction in synapse number, more specifically in the numbers of post-synaptic proteins like PSD95 and Homer 1, when microglia were present in the culture. Importantly, mutations in the Fc region of hNR1-mAb, blocking its Fcγ receptor (FcγR) and complement binding, attenuated hNR1-mAb driven loss of NMDARs and synapses, indicating that microglia engagement by bound hNR1-mAb is critical for receptor and synapse loss. Our data argues for an active involvement of microglia in removal of NMDARs and other receptors in individuals with autoimmune encephalitis, thereby contributing to the etiology of these diseases.


Subject(s)
Autoantibodies , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Autoantibodies/metabolism , Coculture Techniques , Microglia/metabolism , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism
16.
Nanotechnology ; 34(24)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36917852

ABSTRACT

This article addresses the synthesis of Fe3+doped TiO2nanoparticles with variations of molar concentrations of Fe3+and their adequate use as potential photocatalysts for Photocatalysis applications. Synthesized photocatalysts were characterized thoroughly by different analytical techniques in terms of morphological, chemical, structural, crystalline, optical, electronic structure, surface area etc properties. The occurrence of red shift phenomenon of the energy band gap attributes to the transfer of charges and transition between the d electrons of dopant and conduction band (CB) or valence band (VB) of TiO2. The doping of Fe3+ions generates more trap sites for charge carriers with the surface trap sites. Thorough experimental conclusions revealed that the Fe3+ions necessarily regulate the catalytic property of TiO2nanomaterial. The obtained total degradation efficiency rate of Methylene Blue (MB) was 93.3% in the presence of 0.1 M Fe3+in the host material and for Malachite Green Oxalate the efficiency was 100% in the presence of 0.05 M and 0.1 M Fe3+in the host material. In both the cases the total visible light irradiation time was 90 min. The adsorption properties of the photocatalysts have been also performed in a dark for 90 min in the presence of MB dye. However, till now there are hardly reported photocatalysts which shows complete degradation of these toxic organic dyes by visible light driven photocatalysis. of potential values of valence and conduction band shows the production of active oxidizing species for hydrogen yield and the possible mechanism of the Schottky barrier has been proposed. A schematic diagram of visible light driven Photocatalysis has been pictured showing degradation activity of Fe3+-TiO2catalysts sample.

17.
Photochem Photobiol ; 99(2): 420-436, 2023 03.
Article in English | MEDLINE | ID: mdl-36138552

ABSTRACT

Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations. General strategies to minimize side effects are intravesical administration of photosensitizers, use of targeting strategies for photosensitizers and better control of light. Non-muscle invasive bladder cancers are more suitable for PDT than muscle invasive and metastatic bladder cancers. In 2010, the FDA approved blue light cystoscopy, using PpIX fluorescence, for photodynamic diagnosis of non-muscle invasive bladder cancer. PpIX produced from HAL was also used in PDT but was not successful due to low therapeutic efficacy. To enhance the efficacy of PpIX-PDT, we have been working on combining it with singlet oxygen-activatable prodrugs. The use of these prodrugs increases the therapeutic efficacy of the PpIX-PDT. It also improves tumor selectivity of the prodrugs due to the preferential formation of PpIX in cancer cells resulting in decreased off-target toxicity. Future challenges include improving prodrugs and light delivery across the bladder barrier to deeper tumor tissue and generating an effective therapeutic response in an In vivo setting without causing collateral damage to bladder function.


Subject(s)
Photochemotherapy , Prodrugs , Urinary Bladder Neoplasms , Humans , Photosensitizing Agents/therapeutic use , Aminolevulinic Acid/therapeutic use , Photochemotherapy/methods , Protoporphyrins , Urinary Bladder Neoplasms/drug therapy
18.
eNeuro ; 9(6)2022.
Article in English | MEDLINE | ID: mdl-36446572

ABSTRACT

Autoantibodies against central nervous system proteins are increasingly being recognized in association with neurologic disorders. Although a growing number of neural autoantibodies have been identified, a causal link between specific autoantibodies and disease symptoms remains unclear, as most studies use patient-derived CSF-containing mixtures of autoantibodies. This raises questions concerning mechanism of action and which autoantibodies truly contribute to disease progression. To address this issue, monoclonal autoantibodies were isolated from a young girl with a range of neurologic symptoms, some of which reacted with specific GABAA receptor (GABAAR) subunits, α1-subunit and α1γ2-subunit, which in this study we have characterized in detail using a combination of cellular imaging and electrophysiological techniques. These studies in neurons from wild-type mice (C57BL/6J; RRID:IMSR_JAX:000664) of mixed-sex revealed that the α1 and α1γ2 subunit-specific antibodies have differential effects on the GABAA receptor. Namely, the α1-antibody was found to directly affect GABAA receptor function on a short time scale that diminished GABA currents, leading to increased network excitability. On longer time scales those antibodies also triggered a redistribution of the GABAA receptor away from synapses. In contrast, the α1γ2-antibody had no direct effect on GABAA receptor function and could possibly mediate its effect through other actors of the immune system. Taken together, these data highlight the complexity underlying autoimmune disorders and show that antibodies can exert their effect through many mechanisms within the same disease.


Subject(s)
Encephalitis , Receptors, GABA-A , Animals , Mice , Receptors, GABA-A/metabolism , Autoantibodies/metabolism , Mice, Inbred C57BL , gamma-Aminobutyric Acid
19.
Materials (Basel) ; 15(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36143584

ABSTRACT

Antimony trisulfide (Sb2Se3), a non-toxic and accessible substance, has possibilities as a material for use in solar cells. The current study numerically analyses Sb2Se3 solar cells through the program Solar Cell Capacitance Simulator (SCAPS). A detailed simulation and analysis of the influence of the Sb2Se3 layer's thickness, defect density, band gap, energy level, and carrier concentration on the devices' performance are carried out. The results indicate that a good device performance is guaranteed with the following values in the Sb2Se3 layer: an 800 optimal thickness for the Sb2Se3 absorber; less than 1015 cm-3 for the absorber defect density; a 1.2 eV optimum band gap; a 0.1 eV energy level (above the valence band); and a 1014 cm-3 carrier concentration. The highest efficiency of 30% can be attained following optimization of diverse parameters. The simulation outcomes offer beneficial insights and directions for designing and engineering Sb2Se3 solar cells.

20.
J Mol Biol ; 434(19): 167759, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35872070

ABSTRACT

The interferon-induced transmembrane (IFITM) proteins broadly inhibit the entry of diverse pathogenic viruses, including Influenza A virus (IAV), Zika virus, HIV-1, and SARS coronaviruses by inhibiting virus-cell membrane fusion. IFITM3 was previously shown to disrupt cholesterol trafficking, but the functional relationship between IFITM3 and cholesterol remains unclear. We previously showed that inhibition of IAV entry by IFITM3 is associated with its ability to promote cellular membrane rigidity, and these activities are functionally linked by a shared requirement for the amphipathic helix (AH) found in the intramembrane domain (IMD) of IFITM3. Furthermore, it has been shown that the AH of IFITM3 alters lipid membranes in vitro in a cholesterol-dependent manner. Therefore, we aimed to elucidate the relationship between IFITM3 and cholesterol in more detail. Using a fluorescence-based in vitro binding assay, we found that a peptide derived from the AH of IFITM3 directly interacted with the cholesterol analog, NBD-cholesterol, while other regions of the IFITM3 IMD did not, and native cholesterol competed with this interaction. In addition, recombinant full-length IFITM3 protein also exhibited NBD-cholesterol binding activity. Importantly, previously characterized mutations within the AH of IFITM3 that strongly inhibit antiviral function (F63Q and F67Q) disrupted AH structure in solution, inhibited cholesterol binding in vitro, and restricted bilayer insertion in silico. Our data suggest that direct interactions with cholesterol may contribute to the inhibition of membrane fusion pore formation by IFITM3. These findings may facilitate the design of therapeutic peptides for use in broad-spectrum antiviral therapy.


Subject(s)
Cholesterol , Influenza A virus , Membrane Proteins , RNA-Binding Proteins , Cholesterol/chemistry , Humans , Influenza A virus/immunology , Membrane Proteins/chemistry , Protein Conformation, alpha-Helical , RNA-Binding Proteins/chemistry , Virus Internalization , Zika Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...